Urea FS* (Harnstoff FS*)

Bestellinformation

Bestellnummer	Packungsgröße			
1 3101 99 10 021	R1 5 x 20 mL	+	R2	1 x 25 mL
1 3101 99 10 026	R1 5 x 80 mL	+	R2	1 x 100 mL
1 3101 99 10 023	R1 1 x 800 ml	_ +	R2	1 x 200 mL
1 3101 99 10 704	R1 8 x 50 mL	+	R2	8 x 12,5 mL
1 3101 99 10 917	R1 8 x 60 mL	+	R2	8 x 15 mL

Verwendungszweck

Diagnostisches Reagenz zur quantifativen in vitro Bestimmung von Harnstoff in humanem Serum, Heparinplasma oder Urin an automatisierten photometrischen Systemen.

Zusammenfassung

Harnstoff ist stickstoffhaltige Endprodukt Proteinstoffwechsels. Zustände mit erhöhter Harnstoff-Konzentration im Blut werden Hyperurämie oder Azotämie genannt. Die gleichzeitige Bestimmung von Harnstoff und Creatinin wird zur Unterscheidung zwischen prärenaler und postrenaler Azotämie herangezogen. Prä-renale Azotämie, z.B. durch Dehydrierung, erhöhten Proteinstoffwechsel, Cortisol-Behandlung verminderte renale Perfusion, führt zu erhöhten Harnstoffwerten, während die Creatinin-Konzentration innerhalb Referenzbereichs bleibt. Bei postrenaler Azotämie, z.B. bei Verschluss der Harnwege, steigen sowohl Harnstoff als auch Creatinin-Konzentrationen an, aber Creatinin in geringerem Ausmaß. Bei Nierenerkrankungen treten erhöhte Harnstoff-Konzentrationen auf, wenn die glomeruläre Filtrationsrate stark vermindert ist und die Protein-Aufnahme 200 g/Tag überschreitet. [1,2]

Methode

"Urease - GLDH": enzymatischer UV-Test

GLDH 2-Oxoglutarat + NH₄ $^+$ + NADH — L-Glutamat + NAD $^+$ + H₂O

GLDH: Glutamatdehydrogenase

Reagenzien

Bestandteile und Konzentrationen

R1:	TRIS	pH 7,8	150 mmol/L
	2-Oxoglutarat		9 mmol/L
	ADP		0,75 mmol/L
	Urease		≥ 7 kU/L
	GLDH (Rind)		≥ 1 kU/L
R2:	NADH		1,3 mmol/L

Lagerung und Haltbarkeit

Reagenzien sind bei $2-8\,^{\circ}\text{C}$ bis zum auf dem Kit angegeben Verfallsdatum verwendbar, wenn Kontamination vermieden wird. Nicht einfrieren und lichtgeschützt aufbewahren.

Die Gebrauchsstabilität des Reagenzes beträgt 18 Monate.

Warnungen und Vorsichtsmaßnahmen

- Die Reagenzien enthalten Natriumazid (0,95 g/L) als Konservierungsmittel. Nicht verschlucken! Berührung mit Haut und Schleimhäuten vermeiden.
- Reagenz 1 enthält Material biologischen Ursprungs. Behandeln Sie das Produkt als potentiell infektiös gemäß allgemein anerkannter Vorsichtsmaßnahmen und guter Laborpraxis.
- In sehr seltenen Fällen kann es bei Proben von Patienten mit Gammopathien zu verfälschten Ergebnissen kommen [3].
- Bei Fehlfunktion des Produkts oder einem veränderten Aussehen, das die Leistung beeinträchtigen könnte, wenden Sie sich an den Hersteller.
- Jeder schwerwiegende Zwischenfall im Zusammenhang mit dem Produkt muss dem Hersteller und der zuständigen

- Behörde des Mitgliedstaates, in dem sich der Anwender und/oder Patient befindet, gemeldet werden.
- Beachten Sie bitte die Sicherheitsdatenblätter (SDB) und die notwendigen Vorsichtsmaßnahmen für den Gebrauch von Laborreagenzien. Für diagnostische Zwecke sind die Ergebnisse stets im Zusammenhang mit der Patientenvorgeschichte, der klinischen Untersuchung und anderen Untersuchungsergebnissen zu werten.
- Nur für professionelle Anwendung.

Entsorgung

Um eine sichere Entsorgung von Chemikalien zu gewährleisten, beachten Sie die gesetzlichen Vorschriften wie im SDB hinterlegt.

Warnung: Abfall als potenziell biologisch gefährliches Material behandeln. Entsorgen Sie den Abfall gemäß den üblichen Laboranweisungen und -verfahren.

Reagenzvorbereitung

Die Reagenzien sind gebrauchsfertig.

Benötigte Materialien

Übliche Laborausrüstung

Probenmaterial

Humanes Serum, Heparinplasma (kein Ammonium-Heparin) oder frischer Urin

Urin 1 + 50 mit Aqua dest. verdünnen und Ergebnisse mit 51 multiplizieren. TruLab Urin Kontrolle genauso verdünnen wie die Patientenproben.

Verwenden Sie zur Probenentnahme und -aufbereitung nur geeignete Röhrchen oder Sammelbehälter.

Bei Verwendung von Primärröhrchen sind die Anweisungen des Herstellers zu befolgen.

Haltbarkeit in Serum/Plasma [4]:

7 Tage	bei	20 – 25 °C
7 Tage	bei	4 – 8 °C
1 Jahr	bei	−20 °C

Haltbarkeit in Urin [4]:

2 Tage	bei	20 – 25 °C
7 Tage	bei	4 – 8 °C
4 Wochen	bei	−20 °C

Nur einmal einfrieren. Kontaminierte Proben verwerfen.

Testschema

Grundeinstellungen am BioMajesty® JCA-BM6010/C

Wellenlänge	340/410 nm
Temperatur	37 °C
Messung	Endpunkt
Probe/Kalibrator	2,0 µL
Reagenz 1	80 μL
Reagenz 2	20 μL
Zugabe Reagenz 2	Zyklus 19 (286 s)
Extinktion	Zyklus 23/29 (340 s/421 s)
Kalibration	Linear

Berechnung

Mit Kalibrator

Harnstoff [mg/dL] =
$$\frac{\Delta E \text{ Probe}}{\Delta E \text{ Kal.}} \times \text{Konz. Kal. [mg/dL]}$$

Umrechnungsfaktor

Harnstoff [mg/dL] x 0,1665 =Harnstoff [mmol/L] Harnstoff [mg/dL] x 0,467 = BUN [mg/dL] BUN [mg/dL] x 2,14 = Harnstoff [mg/dL]

(BUN: Blood urea nitrogen = Harnstoff-N im Blut)

Harnstoff FS – Seite 1 844 3101 10 01 42 Mai 2022/1

Kalibratoren und Kontrollen

DiaSys TruCal U wird zur Kalibration empfohlen. Die Kalibratorwerte sind rückverfolgbar auf NIST-SRM 909b Level 1. Alternativ kann Harnstoff Standard FS (Urea Standard FS) zur Kalibration verwendet werden. DiaSys TruLab N und P oder TruLab Urin Level 1 und 2 (TruLab Urine Level 1/2) für die interne Qualitätskontrolle messen. Nach der Kalibration muss eine Qualitätskontrolle durchgeführt werden. Die Kontrollintervalle und -grenzwerte müssen an die individuellen Anforderungen des jeweiligen Labors angepasst werden. Die Ergebnisse müssen innerhalb der festgelegten Bereiche liegen. Beachten Sie die einschlägigen gesetzlichen Bestimmungen und Richtlinien. Jedes Labor sollte Korrekturmaßnahmen für den Fall einer Abweichung bei der Kontrollwiederfindung festlegen.

	Bestellnummer	Pack	Packungsgröße			
TruCal U	5 9100 99 10 063	20	Х	3 mL		
	5 9100 99 10 064	6	Χ	3 mL		
TruLab N	5 9000 99 10 062	20	Х	5 mL		
	5 9000 99 10 061	6	Χ	5 mL		
TruLab P	5 9050 99 10 062	20	Χ	5 mL		
	5 9050 99 10 061	6	Χ	5 mL		
TruLab Urine Level 1	5 9170 99 10 062	20	Χ	5 mL		
	5 9170 99 10 061	6	Χ	5 mL		
TruLab Urine Level 2	5 9180 99 10 062	20	Χ	5 mL		
	5 9180 99 10 061	6	Χ	5 mL		
Urea Standard FS	1 3100 99 10 030	6	Х	3 mL		

Leistungsmerkmale

Datenerhebung am BioMajesty® JCA-BM6010/C mit Serum/Plasma

Messbereich bis 300 mg/dL.						
Wird	dieser	Bereich	überschritten,	die	Proben	
1 + 2 mit NaCl-Lösung (9 g/L) verdünnen und das Ergebnis mit						
3 multip	olizieren.					
Nachw	eisgrenze*	**	4 mg/dL			

Hadriweldgrenze	+ mg/aL				
Störende Substanz	Interferenzen ≤ 10 % bis	Analyt- konzentration [mg/dL]			
Ammonium	300 μg/dL	11,2			
	300 μg/dL	30,7			
Ascorbinsäure	60 mg/dL	11,3			
	60 mg/dL	29,2			
Bilirubin (konjugiert)	60 mg/dL	11,3			
	60 mg/dL	30,8			
Bilirubin (unkonjugiert)	60 mg/dL	11,5			
	60 mg/dL	31,0			
Hämoglobin	900 mg/dL	11,4			
	900 mg/dL	29,4			
Lipämie (Triglyceride)	2000 mg/dL	9,01			
	1900 mg/dL	26,0			
Weitere Informationen zu Interferenzen finden Sie bei Young DS [5.6].					

Präzision (Serum/Plasma)						
In der Serie (n=20)	Probe 1	Probe 2	Probe 3			
Mittelwert [mg/dL]	18,5	42,4	144			
VK [%]	1,52	1,07	0,489			
Totale Präzision CLSI (n=80)	Probe 1	Probe 2	Probe 3			
Mittelwert [mg/dL]	18,4	43,1	147			
VK [%]	2,18	1,37	0,968			

Methodenvergleich (Serum/Plasma; n=149)				
Test x Mitbewerber Harnstoff (cobas c 501)				
Test y	DiaSys Harnstoff FS (BioMajesty® JCA-BM6010C)			
Steigung	1,05			
Achsenabschnitt 0,469 mg/dL				
Korrelationskoeffizient	0,999			

mit Urin

Messbereich von 150 bis 16000 mg/dL.							
Wird	Wird dieser Bereich überschritten, die Proben						
1 + 2 m	1 + 2 mit NaCl-Lösung (9 g/L) verdünnen und das Ergebnis mit						
3 multiplizieren.							
Nachweisgrenze** 100 mg/dL							

Nachweisgrenze**		100 mg/dL			
Störende Substanz	ı	nterferenzen ≤ 10 % bis	Analyt- konzentration [mg/dL]		
Ammonium		230 µg/dL	1510		
		230 µg/dL	3224		
Ascorbinsäure		290 mg/dL	1484		
		290 mg/dL	2995		
Bilirubin (konjugiert)		60 mg/dL	1510		
		60 mg/dL	2978		
Borsäure		590 mg/dL	1413		
		590 mg/dL	2818		
Glucose		2000 mg/dL	1579		
		2000 mg/dL	3397		
Hämoglobin		1000 mg/dL	1556		
		1000 mg/dL	2905		
Harnsäure		22 mg/dL	1473		
		22 mg/dL	3003		
Natriumoxalat		70 mg/dL	1467		
		70 mg/dL	2925		
Protein		300 mg/dL	1524		
		300 mg/dL	2948		
Salzsäure		3,5 mL/dL	1580		
		3,5 mL/dL	3381		
Urobilinogen		45 mg/dL	1491		
		45 mg/dL	2976		
Vitamin B12		5,5 mg/L	1562		
		5,5 mg/L	2782		
Weitere Informationen zu Interferenzen finden Sie bei Young DS [5,6].					

Präzision (Urin)			
In der Serie (n=20)	Probe 1	Probe 2	Probe 3
Mittelwert [mg/dL]	478	988	2114
VK [%]	3,76	1,81	1,28
Totale Präzision CLSI (n=80)	Probe 1	Probe 2	Probe 3
Mittelwert [mg/dL]	469	932	2001
VK [%]	4,48	2,12	1,50

Harnstoff FS - Seite 2 844 3101 10 01 42 Mai 2022/1

Methodenvergleich (Urin; n=53)		
Test x	Mitbewerber Harnstoff (cobas c 501)	
Test y	DiaSys Harnstoff FS (BioMajesty® JCA-BM6010C)	
Steigung	1,04	
Achsenabschnitt	0,321 mg/dL	
Korrelationskoeffizient	0,995	

^{**} gemäß CLSI Dokument EP17-A2, Vol. 32, No. 8

Referenzbereiche

Serum/Plasma [1]

	[mg/dL]	[mmol/L]
Erwachsene		
Global	17 – 43	2,8 - 7,2
Frauen < 50 Jahre	15 – 40	2,6-6,7
Frauen > 50 Jahre	21 - 43	3,5 - 7,2
Männer < 50 Jahre	19 – 44	3,2 - 7,3
Männer > 50 Jahre	18 – 55	3,0 - 9,2
Kinder		
1 – 3 Jahr(e)	11 – 36	1,8 - 6,0
4 – 13 Jahre	15 – 36	2,5-6,0
14 – 19 Jahre	18 – 45	2,9 - 7,5
BUN im Serum/Plasma Erwachsene		
	7,94 – 20,1	2,8 - 7,2
Erwachsene	7,94 – 20,1 7,01 – 18,7	2,8 - 7,2 2,6 - 6,7
Erwachsene Global		
Erwachsene Global Frauen < 50 Jahre	7,01 – 18,7	2,6-6,7
Erwachsene Global Frauen < 50 Jahre Frauen > 50 Jahre	7,01 – 18,7 9,81 – 20,1	2,6-6,7 3,5-7,2
Erwachsene Global Frauen < 50 Jahre Frauen > 50 Jahre Männer < 50 Jahre	7,01 – 18,7 9,81 – 20,1 8,87 – 20,5	2,6-6,7 3,5-7,2 3,2-7,3
Erwachsene Global Frauen < 50 Jahre Frauen > 50 Jahre Männer < 50 Jahre Männer > 50 Jahre	7,01 – 18,7 9,81 – 20,1 8,87 – 20,5	2,6-6,7 3,5-7,2 3,2-7,3
Erwachsene Global Frauen < 50 Jahre Frauen > 50 Jahre Männer < 50 Jahre Männer > 50 Jahre Kinder	7,01 - 18,7 9,81 - 20,1 8,87 - 20,5 8,41 - 25,7	2,6 - 6,7 3,5 - 7,2 3,2 - 7,3 3,0 - 9,2

Harnstoff/Creatinin-Quotient im Serum [1]

25 - 40 [(mmol/L)/(mmol/L)]

20 - 35 [(mg/dL)/(mg/dL)]

Harnstoff in Urin [2]

26 - 43 g/24h 0.43 - 0.72 mol/24h

Jedes Labor sollte die Übertragbarkeit der Referenzbereiche für die eigenen Patientengruppen überprüfen und gegebenenfalls eigene Referenzbereiche ermitteln.

Literatur

- Thomas L. Clinical Laboratory Diagnostics. 1st ed. Frankfurt: TH-Books Verlagsgesellschaft; 1998. p. 374-7.
- Burtis CA, Ashwood ER, editors. Tietz Textbook of Clinical Chemistry. 3rd ed. Philadelphia: W.B Saunders Company; 1999. p. 1838.3.
- Bakker AJ, Mücke M. Gammopathy interference in clinical chemistry assays: mechanisms, detection and prevention. Clin Chem Lab Med 2007;45(9):1240-1243.4
- Guder WG, da Fonseca-Wollheim F, Heil W, et al. The Quality of Diagnostic Samples. 3rd ed. Darmstadt: GIT Verlag; 2010. p. 62-3; 68-9.
- Young DS. Effects of Drugs on Clinical Laboratory Tests. 5th ed. Volume 1 and 2. Washington, DC: The American Association for Clinical Chemistry Press 2000.6.
- Young DS. Effects on Clinical Laboratory Tests Drugs Disease, Herbs & Natural Products, https://clinfx.wiley.com/ aaccweb/aacc/, accessed in May 2022. Published by AACC Press and John Wiley and Sons, Inc.

Ergänzungen und/oder Änderungen im Dokument sind grau unterlegt. Für Streichungen verweisen wir auf Kundeninformation der entsprechenden Packungsbeilagen-Editionsnummer.

DiaSys Diagnostic Systems GmbH Alte Straße 9 65558 Holzheim Deutschland www.diasys-diagnostics.com

Harnstoff FS - Seite 3 844 3101 10 01 42 Mai 2022/1

^{*} Flüssig Stabil